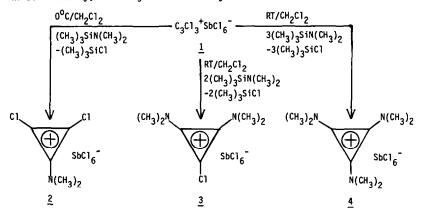
ANION-CONTROLLED REDISTRIBUTION REACTIONS IN THE SYSTEM $C_3C_1_3^+A^-/(Ch_3)_3Sin(Ch_3)_2^{-1}$


R. Weiss

Institut für Organische Chemie, Henkestr. 42, D-8520 Erlangen

<u>Summary:</u> Transamination reactions of the 4z-exchange type between $C_3Cl_3^+A^-$ and $(CH_3)_3Sin(CH_3)_2$ are introduced as a novel mode of aromatic substitution at the C_3^+ -core. The extent of transamination can be controlled by appropriate choice of counterion A^- .

While many ligand redistribution reactions of the 4z-exchange type are known for trigonal boron systems 2), virtually nothing is known about comparable reactions of isoelectronic carbeniumions. As a model case we have examined the reaction of silylamines with chlorocyclopropenium systems as their hexachloroantimonate-V salts and we now wish to report on some remarkable observations which we have made in the course of this study.

Thus we have found that $C_3Cl_3^+SbCl_6^{-3}$ undergoes very clean transamination reactions with $(CH_3)_3Sin(CH_3)_2$, the extent of which can be controlled by simple variation of temperature and stoichiometry, according to the following scheme:

Under the reaction conditions given in the scheme partially aminated cyclopropenium systems $\underline{2}$ and $\underline{3}$ can be obtained in reasonable to good yield. It is noteworthy, that $\underline{2}$ and $\underline{3}$ are both inaccessible by the more conventional transamination technique of reacting C_3Cl_4 with $(CH_3)_2NH$ ⁴.

2 represents the first monodialkylamino-dihalogeno- C_3^+ -system. In view of its two exchangeable Cl-substituents it is of potential value for generating new substitution patterns of the C_3^+ -core. 2 is colorless and readily soluble in CH_2Cl_2 , from which it must be precipitated immediately after formation with n-hexane (yield: 50%; mp.: $180^{\circ}C$ (dec.); 1H -NMR (CDCl $_3$): $\mathcal{T}=6.67$ (s); IR (KBr): 1930 (m), 1613 (s), 1428 (s), 1354 (s) cm $^{-1}$). Gradually in CH_2Cl_2 -solution and almost instantanously in CH_3CN 2 reacts with itself in what seems to be a disproportionation reaction (1) which produces bright yellow insoluble 3 in 80% yield

(mp.: 252° C (dec.); ¹H-NMR (CD₃CN): $\mathcal{T} = 6.78$ (s, 6H), 6.81 (s, 6H); IR (KBr): 1955 (m), 1635 (s), 1409 (s), 1390 (s) cm⁻¹):

$$\frac{2}{\text{solution}} \rightarrow 0.5 \ \underline{3} \downarrow + 0.5 \ \underline{1}$$

The mechanism of this unprecedented ligandredistribution which formally takes place between two positively charged species is unclear at present. $\underline{3}$ is also abtained as bright yellow needles in 65% yield by reacting $\underline{1}$ with 2 moles of silylamine (cf. scheme) at room temperature and subsequent recrystallization of the crude product from CH_2CN .

So far synthesis of bisdialkylamino-chloro- ${\rm C_3}^+$ -systems via ${\rm C_3Cl_4/R_2NH}$ has been restricted to such cases, where bulky groups R prevented triple amination $\frac{4}{1}$. $\frac{3}{2}$ contains the hitherto inaccessible parent of the series, with a reactivity pattern quite different from the sterically hindered homologues $\frac{5}{1}$.

Further reaction of $\underline{3}$ as a suspension in CH₂Cl₂ with excess (CH₃)₃SiN(CH₃)₂ gave the peraminated salt $\underline{4}$ as highly insoluble dark violet cristals in virtually quantitative yield (mp.: 182° C (dec.); 1 H-NMR (CD₃CN): \mathbf{T} = 6.94 (s); IR (KBr): 1560 (s), 1403 (s) cm⁻¹). As colour and solubility of this material differed so dramatically from the corresponding known perchlorate⁴) (which is colourless and very well soluble in CH₂Cl₂) a single crystal X-ray determination of $\underline{4}$ was undertaken⁶). The results of this study fully confirmed the assumed structure and allowed to attribute the abovementioned properties of $\underline{4}$ to a new kind of CT-interaction between cation and anion of this salt. A detailed discussion will be presented in a forthcoming full paper⁷).

Comparison of the $^1\text{H-NMR}$ data of salts $\underline{2-4}$ reveals a progressive down-field shift of methyl resonances in the sequence $\underline{4}$ - $\underline{3}$ - $\underline{2}$ as an indication of the increasing electron demand of the C_3^+ -core along this series. In addition, $\underline{3}$ exhibits rotational hindrance around the C-N bonds, as is expected of a bisdialkylamino- C_3^+ -system. The infrared data of $\underline{2-4}$ are characteristic of cyclopropeniumions of C_{2v} and D_{3h} symmetry, respectively 4 .

Remarkably, replacement of SbCl $_6^-$ in $\underline{1}$ by Cl $_1^+$, BF $_4^-$ or CF $_3$ SO $_3^-$ 8,9) resulted in ex-

Remarkably, replacement of $SbCl_6$ in 1 by Cl_7 , BF_4 or CF_3SO_3 8,9 resulted in exclusive <u>triple</u> amination upon reaction with $(CH_3)_3SiN(CH_3)_2$. Thus, the selective mono- and disubstitution processes reported above are due to a novel type of counterion control 10 , the precise nature of which is under further investigation.

<u>Acknowledgement:</u> Experimental contributions of K. Schloter (University of Munich) and financial aid of the Deutsche Forschungsgemeinschaft and Fonds der Chemischen Industrie are gratefully acknowledged.

References

- Functional cyclo-C₃Derivatives, part 11. Part 10: R. Weiss, P. Marolt, Synthesis, in press.
- 2) D. S. Matterson, Organometallic Reaction Mechanisms, Academic Press (1974).
- 3) S. W. Tobey, R. West, J. Amer. Chem. Soc. 86, 4215 (1964).
- 4) Z. Yoshida, Topics in Current Chemistry 40, 47 (1973).
- 5) R. Weiss, H. Wolf, M. Hertel, unpublished results.
- 6) G. Huttner, U. Schubert, Technical University of Munich.
- 7) R. Weiss, G. Huttner, U. Schubert, in preparation.
- 8) R. Weiss, K. Schloter, Tetrahedron Lett., 3491 (1975).
- 10) R. Weiss, H. Kölbl, C. Schlierf, J. Org. Chem. 41, 2258 (1976).

9) R. Weiss, C. Schlierf, K. Schloter, J. Amer. Chem. Soc. 98, 4668 (1976).

(Received in Germany 19 June 1979)